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Abstract

A mammalian petrosal from the Lower Cretaceous Teete locality in Yakutia (Russia) shows a prominent and complex system of 
venous channels in the bony wall of the pars cochlearis surrounding the straight cochlear canal. This complex venous system is dis-
tinctive and more strongly developed than in other mammalian petrosals. A bony ridge is present on the ventral side of the cochlear 
canal endocast, continuing from between fenestra vestibuli and fenestra cochleae in anterior direction. This ridge corresponds to 
the position of the scala tympani, and is similar to the secondary bony lamina of crown therians, but lacks the sharp laminar edge. 
The fenestra cochleae is separate from the canal for the aquaeductus cochleae (derived), but the fenestra retains a deep sulcus that 
resembles the perilymphatic sulcus (plesiomorphic). The fenestra cochleae is oval shaped and deep. The straight cochlear canal with 
a ridge on the ventral side strongly resembles that of eutriconodontans like Priacodon fruitaensis from the Upper Jurassic of North 
America. However, thick and extensive venous channels in the pars cochlearis are otherwise known from docodontans. In the Teete 
petrosal the channels are even more developed, and resemble the pattern recently reported from possible haramiyidan petrosals from 
the Middle Jurassic of western Siberia (Russia). Both eutriconodontan and haramiyidan dental remains are known from the Teete 
locality beside that of tritylodontids and docodontans.
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Introduction

The Teete locality in Yakutia (Fig. 1) is known since 1960 
when the first dinosaur bones were discovered (see his-
toric survey in Averianov et al. 2018). In Teete high-lati-
tude Lower Cretaceous strata (paleo-latitude estimate of 
62–66.5° N) are exposed and provide the northernmost 
sauropod record (Averianov et al. 2020, Skutschas et al. 
2021). At the Teete locality occur invertebrates such as 
freshwater bivalves and gastropods, and floral elements 
such as mosses, horsetails, lycopods, ferns, and conifers 
(Kolosov et al. 2009). The non-mammaliamorph verte-
brates comprise dinosaurs, turtles, lizards, choristoderes, 
and salamanders (Skutschas et al. 2018, 2020, 2021; 
Averianov et al. 2020). Mammaliamorphs are repre-
sented by the tritylodontid Stereognathus kolossovi, the 
euharamiyidan Cryoharamiya tarda, the tegotheriid do-
codontan Khorotherium yakutense (corrected here from 
K. yakutensis Averianov et al. 2018 to neuter gender K. 
yakutense), the eutriconodontan Sangarotherium aqui-
lonium (Lopatin and Agadjanian 2008; Averianov et al. 

2017, 2018, 2019), and a yet undescribed gobiconodon-
tid. Three joint Russian-German field seasons (2017–
2019) focused on screen washing of fossiliferous matrix 
which yielded numerous micro-vertebrate remains in-
cluding a mammalian petrosal from the Teete locality. 
Beside teeth and lower jaw bones, the petrosal bone, as 
the hardest and densest bone in the mammalian body 
(Frisch et al. 1998), is very resistant to erosion. Petrosals 
are frequently found isolated from the skull in Mesozoic 
fluvio-lacustrine sediments (Hughes et al. 2015; Schultz 
et al. 2021).

Here we describe the first and so far only mammalian 
petrosal from Teete locality. This record is the northern-
most and adds substantial information on early mamma-
lian ear anatomy. We dedicate this study to Professor Dr. 
Wolfgang Maier (Tübingen), one of the pioneers of the 
3D reconstruction and analysis of mammalian internal 
skull anatomy (e.g., Maier 1987, 1993; Maier and van 
den Heever 2002), on the occasion of his 80th birthday.

Figure 1. Map of Russia with Teete locality in Yakutia (asterisk).
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Materials and Methods

The petrosal (PIN 5614/25) was found during picking the 
coarse fraction (1-2 mm) of screen-washed fossiliferous 
matrix at Teete locality in Suntar Ulus, Yakutia, Eastern 
Siberia, Russia. A detailed description of the Teete sec-
tion belonging to the Batylykh Formation, Sangar Series 
(Lower Cretaceous, Berriasian–Barremian) has been pro-
vided by Averianov et al. (2018).

JAS scanned the petrosal (PIN 5614/25) using mi-
cro-computed tomography (GE phoenix|x-ray v|tome|x 
180s; high-power nanofocus) in the Institute of Geosci-
ences, Section Paleontology, Rheinische Friedrich-Wil-
helms-Universität Bonn, Germany. Scan parameters 
were 2.2 µm (voxelsize), 80 kV (voltage), 80 µA (cur-
rent), and a shutter speed of 1000 ms per capture. The 
μ-CT produced isotropic voxels, and the single image 
size is 2024×2024 pixels. RS reconstructed the polygonal 
models using the software Avizo 7.1. Further processing 
was made using the inspection software PolyWorks 2014 
IR13 (InnovMetric Software Inc.).

Institutional abbreviation: PIN, Borissiak Paleontolog-
ical Institute of the Russian Academy of Sciences, Mos-
cow, Russia

Description

External morphology of petrosal PIN 
5614/25

The petrosal (PIN 5614/25) is broken at the anterior and 
posterior ends (Fig. 2A, B). The ventral aspect shows a 
bulbous promontorium with a smooth bone surface. Both 
the fenestra cochleae and the fenestra vestibuli (broken 
posterolaterally) are preserved and separated by a thick 
crista interfenestralis. A thin groove along the inner rim of 
the circular fenestra vestibuli reflects the position of the 
footplate of the stapes. In the medial corner of the fenes-
tra cochleae lies a deep open sulcus and a fully separated 
aquaeductus cochleae is preserved dorsally from the fe-
nestra cochleae. The deep fenestra cochleae is oval, ante-
ro-posteriorly compressed with a flat medial wall. Anteri-
or to the fenestra vestibuli lies a smaller circular foramen, 
the prootic canal. This opening connects to a complex ve-
nous sinus system inside the petrosal bone. Anterolateral-
ly to the prootic canal lies the wide sulcus for the lateral 
head vein which leads medially to the broken edges of 
the pterygoparoccipital foramen. On the anterior aspect 
of the petrosal, the wide space just posteroventrally to the 
broken pterygoparoccipital foramen shows a shallow oval 
shaped depression. This depression is interpreted to have 
contained the geniculate ganglion (Fig. 2E). From the ge-
niculate ganglion depression a groove turns medially to 
follow closely along the promontorium. This is interpret-
ed to be the sulcus for the greater petrosal nerve.

On the dorsal side, the petrosal shows an almost com-
plete internal acoustic meatus (IAM) that contains the 
bony openings for the nervous pathways of the branches 
of the vestibulocochlear nerve (CN VIII) and the facial 
nerve (CN VII) (Fig. 2B). The largest opening is the co-
chlear foramen for the cochlear part of CN VIII, which 
is oval-shaped. This foramen extends in antero-medial 
to postero-lateral direction. There are no bony support-
ing structures visible inside the opening, such as bony 
lamellae, perforated bony bars or cribriform plates. An-
terolaterally from the cochlear foramen are two smaller 
openings. These openings are separated from the foramen 
for cochlear nerve by a thick bony transverse crest. The 
two smaller openings lie in a deep groove; the foramen 
closer to the transverse crest is identified here to be the 
utriculo-ampullar branch of CN VIII. Anterolateral to the 
utriculo-ampullar nerve foramen is the smaller opening 
of the facial canal for CN VII. Anterior to the large co-
chlear foramen are the broken edges of the pterygoparoc
cipital foramen.

Inner ear endocast reconstruction

Due to the damage of the petrosal bone the vestibular re-
gion and the apex of the cochlear canal are missing (Fig. 
2C, D). Only the middle portion of the cochlear canal 
with the cochlear nerve is preserved and both spaces that 
are constituted by the fenestra vestibuli and the fenestra 
cochleae. The cochlear canal appears straight for the part 
that is preserved, but might have been slightly curved 
near the apex which is broken off. The reconstructed 
endocast shows a distinct ridge with a parallel shallow 
groove in the position where a therian secondary lamina 
would be (see discussion below). The ridge and parallel 
groove are two prominent features on the ventral aspect 
of the cochlear canal endocast. Both the ridge and the 
groove extend from between fenestra vestibuli and fenes-
tra cochleae anteriorly until the cochlear canal is broken 
off (Fig. 2C).

On the dorsal side the endocast shows the typical pat-
tern of nervous pathways of the vestibulocochlear nerve 
(CN VIII). The entrance of the cochlear part of CN VIII is 
oval-shaped and the foramen extends in antero-medial to 
postero-lateral direction. On the posterior side of the in-
ner ear endocast, a sulcus extends from an opening in the 
internal auditory meatus to the broken vestibule in pos-
tero-lateral direction. This sulcus contained the vestibu-
lar nerve branch innervating the ampulla of the posterior 
semicircular canal. There is no sulcus or separate canal 
on the anterior side of cochlear canal endocast that would 
lead in antero-medial direction toward a lagenar macula 
in apical region of the cochlear canal. Lateral to the co-
chlear branch of CN VIII is the combined entrance of the 
innervation of the utricular macula and both the ampullae 
of the lateral and anterior semicircular canals. There is no 
indication of a separate sulcus or canal for the innervation 
of the sacculus; the saccular branch probably shared the 
sulcus with the nerve branch innervating the ampulla of 
the posterior semicircular canal.
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The complex venous system surrounding the cochlear 
canal consists of an elaborate network of larger channels 
crossing the cochlear canal dorsally and ventrally. On the 
dorsal (endocranial) side the venous channels are termed 
transcochlear (or epicochlear) sinuses (following Panciro-
li et al. 2019 or Harper and Rougier 2019) (Fig. 3). On the 
ventral (tympanic) side of the cochlear canal the venous 
channels are known as the circumpromontorial plexus 
(following Kermack et al. 1981 and Panciroli et al. 2019). 
On the medial side of the cochlear canal, the transcochle-

ar sinus channels fuse to form larger canals to connect 
to the inferior petrosal sinus. On the lateral side, several 
larger channels of the circumpromontorial plexus connect 
medially to the inferior petrosal sinus, and laterally to the 
prootic sinus. On the dorsal side, two larger connections 
between the vessels on the lateral and the vessels of the 
medial side lie anterior and posterior to the entrance of 
the cochlear part of CN VIII. These connections are the 
anterior and posterior transcochlear (or epicochlear sensu 
Harper and Rougier 2019) sinuses (Fig. 3C, E).

Figure 2. The petrosal from the Lower Cretaceous Teete locality in Yakutia. A) Ventral view and B) dorsal (endocranial) view of the 
petrosal. C) Ventral view and D) dorsal view of the virtually reconstructed cochlear endocast (pink) and innervation areas (yellow). 
E) Anterolateral view of the petrosal with reconstructed soft tissue parts of the cochlear endocast (pink) and venous pathways (blue). 
F) Posteromedial view of the petrosal.
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Three connections of the circumpromontorial plexus 
preserved on the ventral side of the cochlear canal show 
an bifurcating pattern (Fig. 3D). The connections to the 
prootic sinus are documented by the direct bony open-
ing to the prootic canal in this area. All vessels on the 
lateral side lead in posterior direction. Interestingly, the 
connections of the circumpromontorial plexus on the 

ventral side of the cochlear canal are much thicker than 
the dorsal transcochlear sinuses. We report the finding 
that two larger channels run through the crista interfenes-
tralis connecting to the complex venous system. And 
these two channels, called the crista interfenestralis ve-
nous pathways (Fig. 3), are inside the bone between the 
fenestra vestibuli and the fenestra cochleae (Fig. 3D). To 

Figure 3. 3D reconstruction of soft tissue parts of the Teete petrosal. A) Dorsal (endocranial) view of the internal acoustic meatus of 
the petrosal with reconstructed soft tissue parts of the cochlear endocast (pink), venous pathways (blue), and innervation areas (yel-
low). B) Same view as A with translucent bone parts to illustrate the high degree of vascularity of the circum-promontorial region. 
C) Same view as A and B, reconstructed soft tissue parts (cochlear endocast pink, venous pathways blue, innervation areas yellow) 
enclosed in the petrosal bone with indicated missing parts of the inner ear (vestibular region and cochlear apex in shaded gray). D) 
Ventral view of the bifurcating venous pathways. E) Dorsomedial view of the reconstructed soft tissue parts (cochlear endocast pink, 
venous pathways blue, innervation areas yellow).
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our knowledge, this is the first case that two channels in 
the crista interfenestralis have been described. Since the 
posterior part of the petrosal is lost due to breakage, it is 
possible that a connection of the two channels and the 
paroccipital sinus existed.

Discussion

Although broken anteriorly and posteriorly, the mammali-
an petrosal (PIN 5614/25) from the Teete locality shows a 
number of striking features: 1) the co-existence of an open 
sulcus in the medial corner and a separated aquaeductus 
cochleae near the fenestra cochleae which is uncommon 
for non-mammalian mammaliaforms; other non-mamma-
lian mammaliaforms either have an open sulcus, or a ca-
nal of the aquaeductus cochleae, but not both; 2) a straight 
cochlear canal (for the part that is preserved) with a shal-
low groove and a prominent ridge in the same position as 
a base of the secondary lamina, on the ventral aspect of 
the cochlear canal endocast; 3) a well developed, venous 
channel network in the bone of the pars cochlearis, con-
sisting of vessels of large diameters; and 4) connected to 
the venous channel network in the pars cochlearis are two 
large channels inside the crista interfenestralis.

Remains of several mammaliamorphs have been re-
ported for the Teete locality so far, including the trity
lodontid Stereognathus kolossovi, the euharamiyidan 
Cryoharamiya tarda, the tegotheriid docodontan Kho
rotherium yakutense, and the eutriconodontan Sangaro
therium aquilonium (Lopatin and Agadjanian 2008; Ave-
rianov et al. 2017, 2018, 2019), and a yet undescribed 
gobiconodontid.

A tritylodontid origin for the Teete petrosal can be 
excluded, because the bony housing of the cochlear ca-
nal in tritylodontids is lacking an inflated promontorium 
and retains the basisphenoid wing, a primitive feature 
of many cynodonts (Luo 2001). The Teete petrosal is a 
clearly fused single bone with an inflated promontorium 
and no obvious bone sutures or facets for the overlapping 
basisphenoid wing. This morphology suggests that this 
petrosal (PIN 5614/25) is not of a tritylodontid origin.

In the morganucodontan Morganucodon, the docodon-
tans Haldanodon and Borealestes, multituberculates, and 
the monotreme Ornithorhynchus an open sulcus (for the 
perilymphatic duct) leads from the jugular notch to enter 
the inner ear through an opening, also termed the peri-
lymphatic foramen (Lillegraven and Hahn 1993; Zeller 
1993; Hurum 1998; Ruf et al. 2013; Panciroli et al. 2019). 
Wible (1990) interpreted that the perilymphatic duct was 
contained within a well-developed groove on the petrosal 
that runs between the jugular fossa and fenestra cochleae 
in non-mammalian mammaliaforms like morganucodon-
tids, as in case of extant monotremes. With the enlarge-
ment of the pars cochlearis, and the better segregation 
of the inner ear from the middle ear cavity in derived 
mammals, a bony separation (the processus recessus) 
developed to enclose the perilymphatic duct, a transfor-

mation that has also separated the fenestra cochleae from 
the perilymphatic foramen in therians (Zeller 1985). The 
perilymphatic foramen of non-mammalian mammaliafor-
ms can therefore be regarded as a shared opening of the 
presumptive fenestra cochleae and the perilymphatic duct 
in an open sulcus. With the bony separation, the open sul-
cus for the perilymphatic duct is transformed into a ca-
nal and thus the true fenestra cochleae does not show a 
sulcus. The difference between a perilymphatic foramen 
and a fenestra cochleae is defined by the presence of an 
osseous processus recessus (de Beer 1929; Zeller 1985), 
which walls off the perilymphatic duct from the middle 
ear cavity into a canal called the cochlear canaliculus for 
the aquaeductus cochleae (Rougier and Wible 2006). The 
cochlear canal of the Teete petrosal shows an unusual 
co-existence of both the canaliculus for the aquaeductus 
cochleae and a posteromedial opening of a fully separated 
aquaeductus cochleae from the fenestra cochleae, and an 
open sulcus in the medial corner of the fenestra cochleae 
leading to the jugular notch. A perilymphatic foramen as 
shared opening of fenestra cochleae and perilymphatic 
duct and the presence of an open sulcus for the perilym-
phatic duct are considered to be two ancestral characters 
of mammaliamorphs (Kermack et al. 1981; Crompton 
and Luo 1993; Lillegraven and Hahn 1993; Wible and 
Hopson 1993, 1995; Rougier et al. 1996; Luo et al. 2001), 
but the occurrence of a well separated aquaeductus co-
chleae and a fenestra cochleae is regarded as a derived 
character for the cladotherians including living therians 
(Wible 1990; Wible et al. 2001; Ekdale 2013; Luo et al. 
2016; Harper and Rougier 2019; Luo and Manley 2020). 
The preserved sulcus in the medial corner of the fenestra 
cochleae of the Teete petrosal might be a pathway for a 
vein that formerly was the accompanying vein of the peri-
lymphatic duct. A perilymphatic foramen is also found 
in the eutriconodontan Priacodon (Rougier et al. 1996; 
Harper and Rougier 2019), but an additional separated 
aquaeductus cochleae like in the Teete petrosal is not 
present in Priacodon. Interestingly, in both a tentative-
ly assigned gobiconodontid and a trechnotherian petro-
sal (i.e., Höövör 1 and 2 in Harper and Rougier 2019) 
from the Lower Cretaceous of Mongolia a fully separated 
aquaeductus cochleae was observed using virtual 3D en-
docast reconstruction (Harper and Rougier 2019). In an 
earlier work the trechnotherian petrosal was described to 
lack an aquaeductus cochleae (Rougier et al. 1996), but 
this was corrected by Harper and Rougier (2019). In both 
taxa the separated canal lies in a similar position like in 
the Teete specimen. It is important to note, that the bony 
segregation of the fenestra cochleae from its confluent 
sulcus of the perilymphatic duct is seen only in advanced 
stem therians (“cladotherians”). It has been described for 
example for the cladotherians Vincelestes, Dryolestes, 
Henkelotherium and other dryolestoids, and is present in 
the vast majority of therians (Wible 1990; Rougier et al. 
1992; Wible et al. 2001; Ladevèze, 2004, 2007; Ruf et al. 
2009; Luo et al. 2012; Ekdale 2013; Hughes et al 2015). 
Because a separate aquaeductus cochleae is present in 
more derived taxa, it probably represents an apomorphic 
cladotherian character (Ruf et al. 2009; Luo et al. 2012), 
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which may also occur in some trechnotherians accord-
ing to the latest study by Harper and Rougier (2019). 
However, in the modern mysticete cetacean Eschrichtius 
robustus with a teardrop shaped fenestra cochleae a con-
fluence with the perilymphatic foramen exists (Ekdale et 
al. 2011).

The fenestra vestibuli is severely broken in the Teete 
petrosal, but the remnants of its edges suggest a shape 
closer to circular rather than oval. It is known from oth-
er eutriconodontan petrosals that the fenestra vestibuli is 
close to circular (stapedial ratio 1.2, see Harper and Rou-
gier 2019), but the specimen described here is too dam-
aged to calculate a ratio for comparison.

Because the pterygoparoccipital foramen is broken in 
the Teete petrosal it is not clear if it was fully closed (as in 
cladotherians) or a simple open notch (as in non-mamma-
lian mammaliaforms). The superior ramus of the stapedi-
al artery passes through the pterygoparoccipital foramen 
in early mammaliaforms and extant mammals (Wible 
1990; Rougier et al. 1992; Wible and Hopson 1995). In 
non-mammaliaform cynodonts and the morganucodon-
tid Morganucodon the pterygoparoccipital foramen is an 
open notch, which is considered to be the plesiomorphic 
condition (Kermack et al. 1981; Rougier et al. 1992).

The internal acoustic meatus (IAM) of the Teete pe-
trosal shows three major openings. The IAM of the eu-
triconodontan Priacodon was first described to have 
three foramina (Rougier et al. 1996) and later was revised 
to have four foramina (Harper and Rougier 2019). The 
transverse crest in the IAM of the Teete petrosal is quite 
prominent resembling the pattern of the eutriconodontan 
Priacodon (Harper and Rougier 2019). There is no sign 
of a small opening in the prominent transverse crest of the 
Teete petrosal for a separate innervation of the saccular 
macula like in recently described tentatively assigned do-
codontan and haramiyidan petrosals from western Sibe-
ria (Schultz et al. 2021). A well-separated and larger area 
for the innervation of the saccular macula is also found 
in the monotreme Tachyglossus (Schultz et al. 2017). In 
comparison, in the monotreme Ornithorhynchus the sac-
cular innervation lies in a narrow sulcus branching off of 
the cochlear branch close to the utriculo-ampullar branch 
(Schultz et al. 2017). We therefore hypothesize that in the 
Teete specimen the innervation of the saccular macula ei-
ther might have shared the same canal of the utriculo-am-
pullar branch or branched off of the cochlear branch in-
side the cochlear canal suspended in soft tissue.

No sulcus or separate canal on the anterior side of the 
cochlear branch (of CN VIII) opening is observed in the 
Teete petrosal. Such a canal would lead in antero-medial 
direction toward a lagenar macula in the apical region of 
the cochlear canal like it is reported for the docodontan 
Haldanodon (Ruf et al. 2013). Thus, we infer that the la-
genar macula was absent in this petrosal.

The prominent ridge associated with a parallel shallow 
groove on the ventral side of the cochlear canal of the 
Teete petrosal is in the same position where the second-
ary bony lamina would be in cladotherians. This structure 
that can be observed on the ventral side of the cochlear 
canal endocast in spalacotheroids and eutriconodontans is 

different from the “true secondary bony lamina” of clad-
otherians in two characters: the secondary bony lamina is 
wedge-like with a sharp edge, and always co-exists with 
the primary bony lamina. The cochlear canal endocasts 
of both spalacotheroids and eutriconodontans lack both 
these features (Luo and Manley 2020). They are also 
absent in the Teete specimen. In many crown therians, 
the secondary bony lamina is located at the junction of 
the scala media and the scala tympani, one reason some 
authors termed this structure “the secondary lamina base 
without its bony edge” (e.g., Luo et al. 2016) or “sca-
la tympani impression” (e.g., Luo and Manley 2020) in 
spalacotheroids or eutriconodontans. In Harper and Rou-
gier (2019) the structure is termed “secondary (abneural) 
bony lamina of cochlear canal”.

The extensive and prominent network of venous chan-
nels around the cochlear canal of the Teete petrosal caus-
es the cancellous appearance of the pars cochlearis. The 
channels are much larger (wider in the channel diame-
ter) than a similar vascular channel network described 
for the docodontan Borealestes, which shows thin canals 
and a fine circum-promontorium plexus network on the 
ventral side of the cochlear canal (Panciroli et al. 2019). 
The Teete petrosal is similar to Borealestes in having 
an anterior and posterior transcochlear sinus crossing 
the cochlear canals dorsally. Harper and Rougier (2019) 
described similar structures for the eutriconodontan Pri-
acodon, but used the terminology anterior and posterior 
epicochlear sinuses. The Teete petrosal differs from both 
Borealestes and Priacodon in having additional vessels 
crossing the cochlear canal dorsally. Three connections 
of venous pathways are also preserved on the ventral side 
of the cochlear canal with an unusual bifurcating pattern 
very different from the fine network found in Borealestes 
(Panciroli 2019). Thicker ventral connections have also 
been described for Priacodon (Harper and Rougier 2019) 
but those channels are far less developed than in the Teete 
petrosal. Schultz et al. (2021) described a similar exten-
sive vascularization in tentatively assigned haramiyidan 
petrosals from western Siberia. Whether or not this exten-
sive vascularization of the petrosal is an adaptation to the 
subpolar climate needs further investigation.

Two larger channels connecting to the complex venous 
system run through the crista interfenestralis in the Teete 
petrosal and therefore lie in the bone between the fenestra 
vestibuli and the fenestra cochleae. A single thin vessel 
in this area is present in Priacodon (Harper and Rougi-
er 2019: page 7, fig. 3 and page 18, fig. 7) suggesting a 
connection to the paroccipital sinus, which can also be 
assumed for the Teete petrosal. Unfortunately, the whole 
paroccipital region is broken thus we currently cannot 
demonstrate the connection without a more complete 
specimen.

A structure described as “half-pipe shaped sulcus” in 
the two Höövör petrosals (one tentatively assigned to go-
biconodontids, the other probably a trechnotherian; Harp-
er and Rougier 2019) is also seen in the Teete petrosal. 
Harper and Rougier (2019) postulate that this half-pipe 
shaped sulcus is confluent with a venous canal inferred 
to have contained the vein of the aquaeductus cochleae. 
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In some therians, this vein follows a tortuous trajectory 
to connect to the inferior petrosal sinus (Axelsson 1988; 
Harper and Rougier 2019). The reconstruction of the vas-
cular network of the Teete petrosal shows that there is a 
definite connection of this sulcus to a short canal, which 
is confluent with the venous pathways collecting on the 
medial side where the inferior petrosal sinus is located 
(Figs 2D, 3E).

We tentatively assign the Teete petrosal to be of eu-
triconodontan origin, because of the similiarities to the 
petrosal of Priacodon and also the shared features of go-
biconodontids.

Conclusion

The petrosal from Teete displays striking similarities to 
that of the eutriconodontan Priacodon and also shares 
features that are known from a gobiconodontid petrosal 
from the Lower Cretaceous of Mongolia. Like Priacodon 
fruitaensis from the Upper Jurassic of North America, the 
Teete petrosal has an oval shaped and deep fenestra co-
chleae as well as a straight cochlear canal with a ridge on 
the ventral side. The unusual thick blood vessels, howev-
er, resemble the situation recently reported for possible 
haramiyidan petrosals from Middle Jurassic of western 
Siberia (Russia). Eutriconodontan, gobiconodontan, and 
haramiyidan remains are known from the Teete locali-
ty and therefore an assignment of the petrosal to one of 
these taxa is probable.
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